A note on Lovász removable path conjecture

Jie Ma*
School of Mathematics
Georgia Institute of Technology
Atlanta, GA 30332-0160
USA

Abstract

Lovász [8] conjectured that for any natural number k, there exists a least natural number f(k) such that, for any two vertices s,t in any f(k)-connected graph G, there exists an s-t path P such that G - V(P) is k-connected. This conjecture is proved only for $k \leq 2$. Here, we strengthen the result for k = 2 as follows: for any integers l > 0 and $m \geq 0$, there exists a function f(l,m) such that, for any distinct vertices $s,t,v_1,...,v_m$ in any f(l,m)-connected graph G, there exist l internally vertex disjoint s-t paths $P_1,...,P_l$ such that for any subset $I \subset \{1,...,l\}$, $G - \bigcup_{i \in I} V(P_i)$ is 2-connected and $\{v_1,v_2,...,v_m\} \subset V(G) - \bigcup_{1 \leq i \leq l} V(P_i)$.

1 Introduction

The following conjecture is due to Lovász [8] which is still open for $k \geq 3$:

Conjecture 1.1 For any natural number k, there exists a least natural number f(k) such that, for any two vertices s,t in any f(k)-connected graph G, there exists an s-t path P such that G-V(P) is k-connected.

This conjecture has been proved for $k \leq 2$. A theorem of Tutte [11] shows that f(1) = 3. When k = 2, we have f(2) = 5 by a result of Chen, Gould and Yu [2] and, independently, of Kriesell [6]. Later, Kawarabayashi, Lee and Yu [4] characterized the 4-connected graphs G in which there exist two vertices $s, t \in V(G)$ such that G - V(P) is not 2-connected for any s-t path P in G.

Conjecture 1.1 is equivalent to asking if there exists a function g(k) such that for any g(k)-connected graph and for any edge $st \in E(G)$, there exists a cycle C containing st such that G-V(C) is k-connected. Lovász [8] also made a weaker conjecture: any (k+3)-connected graph contains a cycle C such that G-V(C) is k-connected, which was confirmed by Thomassen [10]. Another weaker version of Conjecture 1.1 was proposed by Kriesell [7]: there exists a function h(k) such that for any h(k)-connected graph G and for any two vertices $s,t \in V(G)$, there

^{*}jiema@math.gatech.edu

exists an induced s-t path P in G such that G - E(P) is k-connected. This weaker version was established by Kawarabayashi, Lee, Reed and Wollan [3]. In [3], the authors further conjecture that there exists a function F(k) such that for any F(k)-connected graph G and for any three distinct vertices $s, t, u \in V(G)$, G contains an s-t path P and a k-connected subgraph H such that $u \in V(H)$ and $V(H) \cap V(P) = \emptyset$; and they also show that this conjecture implies Conjecture 1.1. In this sense, it is useful to find an s-t path that avoids a highly connected subgraph containing a specific vertex, which partially motivates our work.

Conjecture 1.1 asks for one removable path. In [2], Chen, Gould and Yu show that in any (22l+2)-connected graph, there exist l internally vertex disjoint paths between any two given vertices such that the deletion of any one of these paths results in a connected graph. Recently, Kawarabayashi and Ozeki [5] strengthened this result as follows: for any (3l+2)-connected graph G and for any two vertices $s, t \in V(G)$, there exist l internally vertex disjoint s-t paths $P_1, ..., P_l$ such that $G - \bigcup_{i=1}^{l} V(P_i)$ is 2-connected. They [5] also pointed out that if G is (2l+1)-connected, then one can find l internally vertex disjoint paths $P_1, ..., P_l$ between any two given vertices such that $G - \bigcup_{i=1}^{l} V(P_i)$ is connected.

In this note, we use a short argument to prove the following:

Theorem 1.2 For any integer l > 0 and $m \ge 0$, let f(l,m) = 30l + 10m + 2. Then for any distinct vertices $s, t, v_1, ..., v_m$ in any f(l,m)-connected graph G, there exist l internally vertex disjoint s-t paths $P_1, ..., P_l$ such that for any subset $I \subset \{1, ..., l\}$, $G - \bigcup_{i \in I} V(P_i)$ is 2-connected and $\{v_1, v_2, ..., v_m\} \subset V(G) - \bigcup_{1 \le i \le l} V(P_i)$.

2 Proof of Theorem 1.2

We begin with some definitions. A linkage is a graph in which every connected component is a path. A linkage problem in a graph G is a set of pairs of vertices of G, for example, $\mathcal{L} = \{\{s_1, t_1\}, ..., \{s_k, t_k\}\}$. A solution to the linkage problem \mathcal{L} is a set of pairwise internally vertex disjoint paths $P_1, ..., P_k$ such that the ends of P_i are s_i and t_i , and if $x \in V(P_i) \cap V(P_j)$ for $i \neq j$ then $x = s_i$ or $x = t_i$. The graph G is k-linked if every linkage problem with k pairwise disjoint pairs of vertices has a solution.

Bollobás and Thomason [1] proved that every 22k-connected graph is k-linked. Here we use the following improved bound by Thomas and Wollan [9]:

Lemma 2.1 Every 10k-connected graph is k-linked.

We also need the following lemma.

Lemma 2.2 For any distinct vertices $s_1, ..., s_l, t_1, ..., t_l, v_1, ..., v_m$ in (30l+10m)-connected graph G, there exist l internally vertex disjoint paths $P_1, ..., P_l$ in G and a 2-connected subgraph H of $G - \bigcup_{1 \le i \le l} V(P_i)$ such that the ends of P_i are s_i and t_i for $1 \le i \le l$, $\{v_1, ..., v_m\} \subset V(H)$, and every vertex in $\{s_1, ..., s_l, t_1, ..., t_l\}$ has at least one neighbor in H.

Proof. Since G is (30l + 10m)-connected, we may find a neighbor a_i of s_i and a neighbor b_i of t_i , for $1 \le i \le l$, such that $a_1, ..., a_l, b_1, ..., b_l, s_1, ..., s_l, t_1, ..., t_l, v_1, ..., v_m$ are pairwise distinct. Now we look at the following linkage problem in G:

$$\mathcal{L} = \{\{s_1, t_1\}, ..., \{s_l, t_l\}, \{a_1, a_2\}, \{a_2, a_3\}, ..., \{a_l, b_1\}, \{b_1, b_2\}, ..., \{b_l, v_1\}, \{v_1, v_2\}, ..., \{v_m, a_1\}\}, \{v_1, v_2\}, ..., \{v_m, a_1\}\}$$

which has 3l + m pairwise disjoint pairs of vertices. By Lemma 2.1, we have a solution of \mathcal{L} : a collection of 3l + m paths $\{P_1, ..., P_{3l}, Q_1, ..., Q_m\}$, where, for $1 \leq i \leq 3l + m$, the ends of the *i*th path of this collection (in the order listed) are the two vertices of the *i*th pair in \mathcal{L} (in the order listed). Let $H = (\bigcup_{l+1 \leq i \leq 3l} P_i) \cup (\bigcup_{1 \leq j \leq m} Q_j)$, which is a cycle through $a_1, ..., a_l, b_1, ..., b_l, v_1, ..., v_m$. Then $P_1, ..., P_l$ and H satisfy the conclusion of the lemma.

Now, we are ready to give the proof of Theorem 1.2.

Proof. Let $G' = G - \{s, t\}$. Since G is (30l + 10m + 2)-connected, G' is (30l + 10m)-connected. We may fix l neighbors of s, say $s_1, s_2, ..., s_l$, and l neighbors of t, say $t_1, t_2, ..., t_l$, such that $s_1, ..., s_l, t_1, ..., t_l, v_1, ...v_m$ are distinct.

By Lemma 2.2, there is a collection $\mathscr{P}=\{P_1,...,P_l\}$ of paths in G' such that $\{v_1,...,v_m\}$ is contained in a 2-connected subgraph $D(\mathscr{P})$ of $G'-\cup_{i=1}^l V(P_i)$ and any vertex of $\{s_1,...,s_l,t_1,...,t_l\}$ has a neighbor in $D(\mathscr{P})$. We call such collection \mathscr{P} feasible. We may choose $D(\mathscr{P})$ to be a maximal 2-connected subgraph of $G'-\cup_{1\leq i\leq l}V(P_i)$, and if there is no ambiguity we simply call it D. Without loss of generality, we assume that the ends of P_i are s_i and t_i for any $1\leq i\leq l$. If $D=G'-\cup_{1\leq i\leq l}V(P_i)$, then $\{s,ss_1\}\cup P_1\cup\{t_1t,t\},...,\{s,ss_l\}\cup P_l\cup\{t_lt,t\}$ satisfy the conclusion of Theorem 1.2. So we may assume $D\neq G'-\cup_{1\leq i\leq l}V(P_i)$, and let $C_1,...,C_q$ be the components of $G'-\cup_{1\leq i\leq l}V(P_i)-V(D)$. By the maximality of D, D contains at most one neighbor of $V(C_i)$ for $1\leq i\leq q$. Without loss of generality, we assume that

$$|V(C_1)| > |V(C_2)| > \dots > |V(C_n)|.$$

We choose a feasible collection $\mathscr{P} = \{P_1, ..., P_l\}$ in G' that

- (1) $|V(D(\mathcal{P}))|$ is maximum,
- (2) subject to (1), $|V(C_1)|$, $|V(C_2)|$, ..., $|V(C_q)|$ are as large as possible with the larger order components having priority, and
- (3) subject to (2), $|V(\bigcup_{1 \le i \le l} P_i)|$ is as small as possible.

Now we consider $G^0 := G'[(\cup_{1 \le i \le l} P_i) \cup C_q]$. We claim that there exist a subset $J \subset \{1, 2, ..., l\}$ and $\{a_j, b_j\} \subset V(P_j)$ for all $j \in J$ such that $G'[(\cup_{j \in J} a_j P_j b_j) \cup C_q]$ is connected and it is separated from the other vertices of G^0 by $\{a_j, b_j : j \in J\}$. The existence of J follows by taking $G'[(\cup_{j \in J} a_j P_j b_j) \cup C_q]$ to be the component of G^0 containing C_q . Without loss of generality, we assume that $b_j \in a_j P_j t_j$ for $j \in J$. We pick $J, \{a_j, b_j : j \in J\}$ such that

(4) if $J' \subset J$ and $\{a'_j, b'_j\} \subset V(a_j P_j b_j)$ for $j \in J'$ are such that $G'[(\bigcup_{j \in J'} a'_j P_j b'_j) \cup C_q]$ is connected and separated from the other vertices of G^0 by $\{a'_j, b'_j : j \in J'\}$, then J' = J and for $j \in J$, $a'_j = a_j$ and $b'_j = b_j$.

In this sense, we call $J, \{a_j, b_j : j \in J\}$ minimal. We may assume that $J = \{1, ..., r\}, r \leq l$. Let $G^1 := G'[(\bigcup_{j \in J} a_j P_j b_j) \cup C_q]$, and $N_q := V(D) \cap N(C_q)$ (hence $|N_q| \leq 1$). Since the connectivity of G' is $30l + 10m \geq 3l + 2$, in $G' - (\{a_j, b_j : j \in J\} \cup N_q)$ one needs at least l + 1 vertices to separate $\bigcup_{j \in J} (a_j P_j b_j - \{a_j, b_j\}) \cup C_q$ from $\bigcup_{1 \leq i \leq q-1} C_i \cup (D - N_q)$, so by pigeonhole principle, there exists $j \in J$, say j = 1, such that $V(a_1 P_1 b_1 - \{a_1, b_1\}) \cap N(\bigcup_{1 \leq i \leq q-1} C_i \cup (D - N_q))$ contains two distinct vertices x and y, where $y \in x P_1 b_1 - \{x\}$.

Claim: There exist r vertex disjoint paths in $G^1 - V(xP_1y)$ from $A := \{a_j : 1 \le j \le r\}$ to $B := \{b_j : 1 \le j \le r\}$.

Proof of Claim: If not, then by Menger's Theorem there exists a cut of size $p \leq r-1$ in $G^1-V(xP_1y)$, say $W:=\{w_2,w_3,...,w_{p+1}\}$, separating A from B. We see that $a_jP_jb_j$ has at least one vertex in W for $2\leq j\leq r$; otherwise $a_jP_jb_j$ connects A and B. So p=r-1 and we may assume that $w_j\in V(a_jP_jb_j)$ for $2\leq j\leq r$. Now, $W\cup V(xP_1y)$ is a cut in G^1 which separates A from B.

Let $D_1 = ((\bigcup_{2 \leq j \leq r} a_j P_j w_j) \cup a_1 P_1 x) - (W \cup \{x\}), D_2 = ((\bigcup_{2 \leq j \leq r} w_j P_j b_j) \cup y P_2 b_1) - (W \cup \{y\}).$ We point out that at most one of $\{D_1, D_2\}$ contains a neighbor of C_q ; otherwise, we can find a path in G^1 from A to B through C_q , disjoint from $W \cup V(xP_1y)$, contradicting to the fact that $W \cup V(xP_1y)$ is a cut in G^1 separating A from B. Without loss of generality, we assume that D_1 does not contain any neighbor of C_q . So $W \cup V(xP_1y)$ separates A from $C_q \cup B$.

We consider $G^2 := G'[(\bigcup_{2 \le j \le r} a_j P_j w_j) \cup a_1 P_1 y]$, and contract $x P_1 y - \{x\}$ into a new vertex x', then call the resulting graph G^3 . Note that xx' is an edge in G^3 .

There exist r vertex disjoint paths from A to $W \cup \{x'\}$ in $G^3 - \{x\}$. Otherwise, by Menger's Theorem, there is a cut of size $t \leq r-1$ in $G^3 - \{x\}$, say $W' = \{w'_2, ..., w'_{t+1}\}$, separating A from $W \cup \{x'\}$. Clearly, $a_j P_j w_j$ has at least one vertex in W' for $2 \leq j \leq r$; so t = r-1 and we may assume that $w'_j \in V(a_j P_j w_j)$ for $2 \leq j \leq r$. Then, it means that $W' \cup \{x\}$ separates A from $W \cup V(xP_1y)$ in G^2 ; since $W \cup V(xP_1y)$ separates A from $C_q \cup B$ in G^1 , $W' \cup \{x\}$ separates A from $C_q \cup B$ in G^1 . But $x \in V(a_1P_1b_1) - \{a_1, b_1\}$, which contradicts (4), in particular $W' \cup \{x\}$ contradicts the choice of A.

Therefore, there exist r vertex disjoint paths in $G^2 - \{x\}$ from A to $W \cup \{u\}$, for some $u \in V(xP_1y) - \{x\}$, say P'_1 from $a_{\pi(1)}$ to u and P'_j from $a_{\pi(j)}$ to w_j for $2 \leq j \leq r$, where π is a permutation of $\{1, ..., r\}$. Then, we have a new collection $\mathscr{P}' = \{P'_1, ..., P'_l\}$, where $P'_1 = s_{\pi(1)}P_{\pi(1)}a_{\pi(1)} \cup a_{\pi(1)}P'_1u \cup uP_1t_1, P'_i = s_{\pi(i)}P_{\pi(i)}a_{\pi(i)} \cup a_{\pi(i)}P'_iw_i \cup w_iP_it_i$ for $2 \leq i \leq r$ and $P'_j = P_j$ for $r+1 \leq j \leq l$. We see that \mathscr{P}' is a feasible collection of G' and satisfies (1) and (2), but $V(\bigcup_{1 \leq i \leq l}P'_i) \subset V(\bigcup_{1 \leq i \leq l}P_i) - \{x\}$, which contradicts (3).

By Claim, there exist r vertex disjoint paths in $G^1 - V(xP_1y)$ from A to B, say $a_{\pi(j)}P'_jb_j, 1 \le j \le r$, where π is a permutation of $\{1, ..., r\}$. Then we have a new collection $\mathscr{P}' = \{P'_1, ..., P'_l\}$, where $P'_i = s_{\pi(i)}P_{\pi(i)}a_{\pi(i)} \cup a_{\pi(i)}P'_ib_i \cup b_iP_it_i$ for $1 \le i \le r$ and $P'_j = P_j$ for $r+1 \le j \le l$. We see that \mathscr{P}' is a feasible collection in G', such that $V(\bigcup_{1 \le i \le l}P'_i) \subset V(\bigcup_{1 \le i \le l}P_i \cup C_q)$ and $V(xP_1y) \cap V(\bigcup_{1 \le i \le l}P'_i) = \emptyset$. If $\{x,y\} \subset N(D-N_q)$, then $D(\mathscr{P}) \cup xP_1y \subset D(\mathscr{P}')$, then \mathscr{P}' contradicts (1). So there exists at least one vertex of $\{x,y\}$, say x, which is in $N(C_j)$ for some $1 \le j \le q-1$, then \mathscr{P}' either contradicts (1) or satisfies (1) but contradicts (2). This completes the proof of Theorem 1.2.

3 Concluding remarks

We note that in Theorem 1.2, those l internally vertex disjoint s-t paths $P_1, ..., P_l$ are not induced; but we can strengthen the result by asking $P_i - \{s, t\}$ be induced for all $1 \le i \le l$. The function f(l, m) = 30l + 10m + 2 is likely not optimal since we use the result that 10k-connected graph is k-linked, and 10k is not known to be optimal for the k-linkage problem. It is easy to see that any improvement on k-linkage problem will give us a better function f(l, m). Lastly, we point out that similar argument (after slight modification) gives a different and shorter proof of the theorem in [5] mentioned in Section 1.

References

- [1] B. Bollobás and A. Thomason, Highly linked graphs, Combinatorica 16 (1996), 313-320.
- [2] G. Chen, R. Gould, X. Yu, Graph Connectivity after path removal, *Combinatorica* **23** (2003), 185-203.
- [3] K. Kawarabayashi, O. Lee, B. Reed, P. Wollan, A weaker version of Lovász' path removable conjecture, J. Combin. Theory Ser. B 98 (2008), 972–979.
- [4] K. Kawarabayashi, O. Lee, X. Yu, Non-separating paths in 4-connected graphs, Ann. Comb. 9 (2005), No. 1, 47-56.
- [5] K. Kawarabayashi, K. Ozeki, Non-separating subgraphs after deleting many disjoint paths, Submitted.
- [6] M. Kriesell, Induced paths in 5-connected graphs, J. Graph Theory 36 (2001), 52-58.
- [7] M. Kriesell, Removable paths conjectures, http://www.fmf.uni-lj.si/~mohar/Problems/P0504Kriesell1.pdf.
- [8] L. Lovász, Problems in recent advances in graph theory, (ed. M. Fiedler), Academia, Prague, 1975.
- [9] R. Thomas and P. Wollan, An improved linare edge bound for graph linkage, *European J. Combin.* **26** (2005), 309-324.
- [10] C. Thomassen, Non-separating cycles in k-connected graphs, J. Graph Theory 5 (1981), 351-354.
- [11] W.T. Tutte, How to draw a graph, Proc. London Math. Soc., 13 (1963), 743-767.