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Abstract

Lovász [8] conjectured that for any natural number k, there exists a least natural number
f(k) such that, for any two vertices s, t in any f(k)-connected graph G, there exists an s-t
path P such that G−V (P ) is k-connected. This conjecture is proved only for k ≤ 2. Here,
we strengthen the result for k = 2 as follows: for any integers l > 0 and m ≥ 0, there exists
a function f(l, m) such that, for any distinct vertices s, t, v1, ..., vm in any f(l, m)-connected
graph G, there exist l internally vertex disjoint s-t paths P1, ..., Pl such that for any subset
I ⊂ {1, ..., l}, G− ∪i∈IV (Pi) is 2-connected and {v1, v2, ..., vm} ⊂ V (G)− ∪1≤i≤lV (Pi).

1 Introduction

The following conjecture is due to Lovász [8] which is still open for k ≥ 3:

Conjecture 1.1 For any natural number k, there exists a least natural number f(k) such that,
for any two vertices s, t in any f(k)-connected graph G, there exists an s-t path P such that
G− V (P ) is k-connected.

This conjecture has been proved for k ≤ 2. A theorem of Tutte [11] shows that f(1) = 3. When
k = 2, we have f(2) = 5 by a result of Chen, Gould and Yu [2] and, independently, of Kriesell [6].
Later, Kawarabayashi, Lee and Yu [4] characterized the 4-connected graphs G in which there
exist two vertices s, t ∈ V (G) such that G− V (P ) is not 2-connected for any s-t path P in G.

Conjecture 1.1 is equivalent to asking if there exists a function g(k) such that for any g(k)-
connected graph and for any edge st ∈ E(G), there exists a cycle C containing st such that
G−V (C) is k-connected. Lovász [8] also made a weaker conjecture: any (k+3)-connected graph
contains a cycle C such that G− V (C) is k-connected, which was confirmed by Thomassen [10].
Another weaker version of Conjecture 1.1 was proposed by Kriesell [7]: there exists a function
h(k) such that for any h(k)-connected graph G and for any two vertices s, t ∈ V (G), there
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exists an induced s-t path P in G such that G− E(P ) is k-connected. This weaker version was
established by Kawarabayashi, Lee, Reed and Wollan [3]. In [3], the authors further conjecture
that there exists a function F (k) such that for any F (k)-connected graph G and for any three
distinct vertices s, t, u ∈ V (G), G contains an s-t path P and a k-connected subgraph H such that
u ∈ V (H) and V (H)∩V (P ) = ∅; and they also show that this conjecture implies Conjecture 1.1.
In this sense, it is useful to find an s-t path that avoids a highly connected subgraph containing
a specific vertex, which partially motivates our work.

Conjecture 1.1 asks for one removable path. In [2], Chen, Gould and Yu show that in any
(22l + 2)-connected graph, there exist l internally vertex disjoint paths between any two given
vertices such that the deletion of any one of these paths results in a connected graph. Recently,
Kawarabayashi and Ozeki [5] strengthened this result as follows: for any (3l+2)-connected graph
G and for any two vertices s, t ∈ V (G), there exist l internally vertex disjoint s-t paths P1, ..., Pl

such that G−∪l
i=1V (Pi) is 2-connected. They [5] also pointed out that if G is (2l+1)-connected,

then one can find l internally vertex disjoint paths P1, ..., Pl between any two given vertices such
that G− ∪l

i=1V (Pi) is connected.
In this note, we use a short argument to prove the following:

Theorem 1.2 For any integer l > 0 and m ≥ 0, let f(l, m) = 30l + 10m + 2. Then for any
distinct vertices s, t, v1, ..., vm in any f(l, m)-connected graph G, there exist l internally vertex
disjoint s-t paths P1, ..., Pl such that for any subset I ⊂ {1, ..., l}, G − ∪i∈IV (Pi) is 2-connected
and {v1, v2, ..., vm} ⊂ V (G)− ∪1≤i≤lV (Pi).

2 Proof of Theorem 1.2

We begin with some definitions. A linkage is a graph in which every connected component
is a path. A linkage problem in a graph G is a set of pairs of vertices of G, for example,
L = {{s1, t1}, ..., {sk, tk}}. A solution to the linkage problem L is a set of pairwise internally
vertex disjoint paths P1, ..., Pk such that the ends of Pi are si and ti, and if x ∈ V (Pi) ∩ V (Pj)
for i 6= j then x = si or x = ti. The graph G is k-linked if every linkage problem with k pairwise
disjoint pairs of vertices has a solution.

Bollobás and Thomason [1] proved that every 22k-connected graph is k-linked. Here we use
the following improved bound by Thomas and Wollan [9]:

Lemma 2.1 Every 10k-connected graph is k-linked.

We also need the following lemma.

Lemma 2.2 For any distinct vertices s1, ..., sl, t1, ..., tl, v1, ..., vm in (30l +10m)-connected graph
G, there exist l internally vertex disjoint paths P1, ...Pl in G and a 2-connected subgraph H of
G − ∪1≤i≤lV (Pi) such that the ends of Pi are si and ti for 1 ≤ i ≤ l, {v1, ..., vm} ⊂ V (H), and
every vertex in {s1, ..., sl, t1, ..., tl} has at least one neighbor in H.
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Proof. Since G is (30l + 10m)-connected, we may find a neighbor ai of si and a neighbor bi of ti,
for 1 ≤ i ≤ l, such that a1, ..., al, b1, ..., bl, s1, ..., sl, t1, ..., tl, v1, ..., vm are pairwise distinct. Now
we look at the following linkage problem in G:

L = {{s1, t1}, ..., {sl, tl}, {a1, a2}, {a2, a3}, ..., {al, b1}, {b1, b2}, ..., {bl, v1}, {v1, v2}, ..., {vm, a1}},

which has 3l + m pairwise disjoint pairs of vertices. By Lemma 2.1, we have a solution of L: a
collection of 3l + m paths {P1, ..., P3l, Q1, ..., Qm}, where, for 1 ≤ i ≤ 3l + m, the ends of the ith
path of this collection (in the order listed) are the two vertices of the ith pair in L (in the order
listed). Let H = (∪l+1≤i≤3lPi)∪(∪1≤j≤mQj), which is a cycle through a1, ..., al, b1, ..., bl, v1, ..., vm.
Then P1, ..., Pl and H satisfy the conclusion of the lemma.

Now, we are ready to give the proof of Theorem 1.2.

Proof. Let G′ = G− {s, t}. Since G is (30l + 10m + 2)-connected, G′ is (30l + 10m)-connected.
We may fix l neighbors of s, say s1, s2, ..., sl, and l neighbors of t, say t1, t2, ..., tl, such that
s1, ..., sl, t1, ..., tl, v1, ...vm are distinct.

By Lemma 2.2, there is a collection P = {P1, ..., Pl} of paths in G′ such that {v1, ..., vm} is
contained in a 2-connected subgraph D(P) of G′−∪l

i=1V (Pi) and any vertex of {s1, ..., sl, t1, ..., tl}
has a neighbor in D(P). We call such collection P feasible. We may choose D(P) to be a
maximal 2-connected subgraph of G′ − ∪1≤i≤lV (Pi), and if there is no ambiguity we simply call
it D. Without loss of generality, we assume that the ends of Pi are si and ti for any 1 ≤ i ≤ l. If
D = G′−∪1≤i≤lV (Pi), then {s, ss1}∪P1∪{t1t, t}, ..., {s, ssl}∪Pl ∪{tlt, t} satisfy the conclusion
of Theorem 1.2. So we may assume D 6= G′−∪1≤i≤lV (Pi), and let C1, ..., Cq be the components
of G′−∪1≤i≤lV (Pi)−V (D). By the maximality of D, D contains at most one neighbor of V (Ci)
for 1 ≤ i ≤ q. Without loss of generality, we assume that

|V (C1)| ≥ |V (C2)| ≥ ... ≥ |V (Cq)|.

We choose a feasible collection P = {P1, ..., Pl} in G′ that

(1) |V (D(P))| is maximum,

(2) subject to (1), |V (C1)|, |V (C2)|, ..., |V (Cq)| are as large as possible with the larger order
components having priority, and

(3) subject to (2), |V (∪1≤i≤lPi)| is as small as possible.

Now we consider G0 := G′[(∪1≤i≤lPi)∪Cq]. We claim that there exist a subset J ⊂ {1, 2, ..., l} and
{aj, bj} ⊂ V (Pj) for all j ∈ J such that G′[(∪j∈JajPjbj)∪Cq] is connected and it is separated from
the other vertices of G0 by {aj, bj : j ∈ J}. The existence of J follows by taking G′[(∪j∈JajPjbj)∪
Cq] to be the component of G0 containing Cq. Without loss of generality, we assume that
bj ∈ ajPjtj for j ∈ J . We pick J, {aj, bj : j ∈ J} such that

(4) if J ′ ⊂ J and {a′j, b′j} ⊂ V (ajPjbj) for j ∈ J ′ are such that G′[(∪j∈J ′a
′
jPjb

′
j) ∪ Cq] is

connected and separated from the other vertices of G0 by {a′j, b′j : j ∈ J ′}, then J ′ = J and
for j ∈ J , a′j = aj and b′j = bj.
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In this sense, we call J, {aj, bj : j ∈ J} minimal. We may assume that J = {1, ..., r}, r ≤ l. Let
G1 := G′[(∪j∈JajPjbj) ∪ Cq], and Nq := V (D) ∩N(Cq) (hence |Nq| ≤ 1). Since the connectivity
of G′ is 30l + 10m ≥ 3l + 2, in G′ − ({aj, bj : j ∈ J} ∪ Nq) one needs at least l + 1 vertices to
separate ∪j∈J(ajPjbj − {aj, bj}) ∪ Cq from ∪1≤i≤q−1Ci ∪ (D − Nq), so by pigeonhole principle,
there exists j ∈ J , say j = 1, such that V (a1P1b1−{a1, b1})∩N(∪1≤i≤q−1Ci∪ (D−Nq)) contains
two distinct vertices x and y, where y ∈ xP1b1 − {x}.
Claim: There exist r vertex disjoint paths in G1 − V (xP1y) from A := {aj : 1 ≤ j ≤ r} to
B := {bj : 1 ≤ j ≤ r}.
Proof of Claim: If not, then by Menger’s Theorem there exists a cut of size p ≤ r − 1 in
G1−V (xP1y), say W := {w2, w3, ..., wp+1}, separating A from B. We see that ajPjbj has at least
one vertex in W for 2 ≤ j ≤ r; otherwise ajPjbj connects A and B. So p = r − 1 and we may
assume that wj ∈ V (ajPjbj) for 2 ≤ j ≤ r. Now, W ∪ V (xP1y) is a cut in G1 which separates A
from B.

Let D1 = ((∪2≤j≤rajPjwj)∪a1P1x)− (W ∪{x}), D2 = ((∪2≤j≤rwjPjbj)∪yP2b1)− (W ∪{y}).
We point out that at most one of {D1, D2} contains a neighbor of Cq; otherwise, we can find a
path in G1 from A to B through Cq, disjoint from W ∪ V (xP1y), contradicting to the fact that
W ∪ V (xP1y) is a cut in G1 separating A from B. Without loss of generality, we assume that
D1 does not contain any neighbor of Cq. So W ∪ V (xP1y) separates A from Cq ∪B.

We consider G2 := G′[(∪2≤j≤rajPjwj) ∪ a1P1y], and contract xP1y − {x} into a new vertex
x′, then call the resulting graph G3. Note that xx′ is an edge in G3.

There exist r vertex disjoint paths from A to W ∪ {x′} in G3−{x}. Otherwise, by Menger’s
Theorem, there is a cut of size t ≤ r− 1 in G3−{x}, say W ′ = {w′

2, ..., w
′
t+1}, separating A from

W ∪ {x′}. Clearly, ajPjwj has at least one vertex in W ′ for 2 ≤ j ≤ r; so t = r − 1 and we may
assume that w′

j ∈ V (ajPjwj) for 2 ≤ j ≤ r. Then, it means that W ′ ∪ {x} separates A from
W ∪ V (xP1y) in G2; since W ∪ V (xP1y) separates A from Cq ∪ B in G1, W ′ ∪ {x} separates A
from Cq ∪B in G1. But x ∈ V (a1P1b1)− {a1, b1}, which contradicts (4), in particular W ′ ∪ {x}
contradicts the choice of A.

Therefore, there exist r vertex disjoint paths in G2 − {x} from A to W ∪ {u}, for some
u ∈ V (xP1y) − {x}, say P ′

1 from aπ(1) to u and P ′
j from aπ(j) to wj for 2 ≤ j ≤ r, where

π is a permutation of {1, ..., r}. Then, we have a new collection P ′ = {P ′
1, ..., P

′
l }, where

P ′
1 = sπ(1)Pπ(1)aπ(1) ∪ aπ(1)P

′
1u ∪ uP1t1, P

′
i = sπ(i)Pπ(i)aπ(i) ∪ aπ(i)P

′
iwi ∪ wiPiti for 2 ≤ i ≤ r and

P ′
j = Pj for r + 1 ≤ j ≤ l. We see that P ′ is a feasible collection of G′ and satisfies (1) and (2),

but V (∪1≤i≤lP
′
i ) ⊂ V (∪1≤i≤lPi)− {x}, which contradicts (3).

By Claim, there exist r vertex disjoint paths in G1−V (xP1y) from A to B, say aπ(j)P
′
jbj, 1 ≤

j ≤ r, where π is a permutation of {1, ..., r}. Then we have a new collection P ′ = {P ′
1, ..., P

′
l },

where P ′
i = sπ(i)Pπ(i)aπ(i) ∪ aπ(i)P

′
i bi ∪ biPiti for 1 ≤ i ≤ r and P ′

j = Pj for r + 1 ≤ j ≤ l.
We see that P ′ is a feasible collection in G′, such that V (∪1≤i≤lP

′
i ) ⊂ V (∪1≤i≤lPi ∪ Cq) and

V (xP1y) ∩ V (∪1≤i≤lP
′
i ) = ∅. If {x, y} ⊂ N(D − Nq), then D(P) ∪ xP1y ⊂ D(P ′), then P ′

contradicts (1). So there exists at least one vertex of {x, y}, say x, which is in N(Cj) for some
1 ≤ j ≤ q− 1, then P ′ either contradicts (1) or satisfies (1) but contradicts (2). This completes
the proof of Theorem 1.2.
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3 Concluding remarks

We note that in Theorem 1.2, those l internally vertex disjoint s-t paths P1, ..., Pl are not induced;
but we can strengthen the result by asking Pi−{s, t} be induced for all 1 ≤ i ≤ l. The function
f(l,m) = 30l + 10m + 2 is likely not optimal since we use the result that 10k-connected graph
is k-linked, and 10k is not known to be optimal for the k-linkage problem. It is easy to see that
any improvement on k-linkage problem will give us a better function f(l, m). Lastly, we point
out that similar argument (after slight modification) gives a different and shorter proof of the
theorem in [5] mentioned in Section 1.
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